David MacKay Appointed Chief Scientific Advisor
09-21-09
David MacKay (CNS PhD '92), Professor in the Department of Physics at Cambridge University and author of the influential book Sustainable Energy - Without the Hot Air has been appointed Chief Scientific Advisor to the Department of Energy and Climate Change, UK. He is internationally known for his research in machine learning, information theory, and communication systems, including the invention of Dasher, a software interface that enables efficient communication in any language with any muscle. He has taught Physics in Cambridge since 1995. Since 2005, he has devoted increasing amounts of time to public teaching about energy.
Tags:
EE
David MacKay
Paul Rothemund and Colleagues Use Self-Assembled DNA Scaffolding to Build Tiny Circuit Boards
08-18-09
Dr. Paul Rothemund, Senior Research Associate in Bioengineering, Computer Science, and Computation and Neural Systems, and colleagues have developed a new technique to orient and position self-assembled DNA shapes and patterns--or "DNA origami"--on surfaces that are compatible with today's semiconductor manufacturing equipment. They "have removed a key barrier to the improvement and advancement of computer chips. They accomplished this through the revolutionary approach of combining the building blocks for life with the building blocks for computing," said Professor Ares Rosakis, Chair of Division of Engineering and Applied Science and Theodore von Kármán Professor of Aeronautics and Mechanical Engineering. [Caltech Press Release]
Tags:
EE
research highlights
health
CMS
Paul Rothemund
Niles Pierce gives Earnest C. Watson Lecture
04-30-09
Niles Pierce, Associate Professor of Applied and Computational Mathematics and Bioengineering, and the Executive Officer for Bioengineering at Caltech, to give Earnest C. Watson Lecture "In Pursuit of Programmable Molecular Technologies" Our bodies contain amazing molecular machines whose function is encoded within the molecules themselves – RNA and protein sequences programmed by evolution to synthesize molecules, haul cargo within our cells, or regulate our development and repair. These remarkable biological proofs-of-principle inspire the emerging field of molecular programming and suggest the possibility of new technologies in which the function of therapeutic drugs and scientific instruments can be programmed at the molecular level. The lecture takes place May 20 at 8:00 p.m. in Beckman Auditorium.
Tags:
EE
Niles Pierce
Pietro Perona Trains Computers to Analyze Fruit-Fly Behavior
04-08-09
Researchers led by Pietro Perona, the Allen E. Puckett Professor of Electrical Engineering, and David J. Anderson, the Roger W. Sperry Professor of Biology and a Howard Hughes Medical Institute Investigator, have trained computers to automatically analyze aggression and courtship in fruit flies, opening the way for researchers to perform large-scale, high-throughput screens for genes that control these innate behaviors. The program allows computers to examine half an hour of video footage of pairs of interacting flies in what is almost real time; characterizing the behavior of a new line of flies "by hand" might take a biologist more than 100 hours. "This is a coming-of-age moment in this field," says Perona. "By choosing among existing machine vision techniques, we were able to put together a system that is much more capable than anything that had been demonstrated before." This work is detailed in the April issue of Nature Methods. [Caltech Press Release]
Tags:
EE
research highlights
Pietro Perona
Ali Hajimiri Awarded $6 Million to Develop Self-Healing Circuits
04-08-09
Over the past few decades, the transistors in computer chips have become progressively smaller and faster, allowing upwards of a billion individual transistors to be packed into a single circuit, thus shrinking the size of electronic devices. But these circuits have an intractable design flaw: if just a single transistor fails, the entire circuit also fails. One novel way around the problem is a so-called self-healing circuit. Such circuits are "inspired by biological systems that constantly heal themselves in the presence of random and intentional failures," says Caltech professor Ali Hajimiri.
Tags:
EE
research highlights
MedE
Ali Hajimiri