News & Events

Headlines

Ultrafast Camera Films 3-D Movies at 100 Billion Frames Per Second

10-19-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed technology that can reach blistering speeds of 70 trillion frames per second, fast enough to see light travel. Just like the camera in your cell phone, though, it can only produce flat images. Now, Wang's lab has gone a step further to create a camera that not only records video at incredibly fast speeds but does so in three dimensions. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Lei Li Wins Charles Wilts Prize

06-02-20

Lei Li advised by Lihong Wang is a winner of this year's Charles Wilts Prize, for his doctoral thesis "Multi-contrast Photoacoustic Computed Tomography." The Charles Wilts Prize is awarded every year to a graduate student in Electrical Engineering for outstanding independent research.

Tags: EE honors Wilts Prize Lihong Wang Lei Li

New Ultrafast Camera Takes 70 Trillion Pictures Per Second

05-04-20

A new camera developed by Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, is capable of taking as many as 70 trillion frames per second. The camera technology, which Wang calls compressed ultrafast spectral photography (CUSP), combines a laser that emits extremely short pulses of laser light that last only one quadrillionth of a second (one femtosecond) with optics and a specialized type of camera. The technology could open up new avenues of research in fields that include fundamental physics, next-generation semiconductor miniaturization, and the life sciences. "We envision applications in a rich variety of extremely fast phenomena, such as ultrashort light propagation, wave propagation, nuclear fusion, photon transport in clouds and biological tissues, and fluorescent decay of biomolecules, among other things," Wang says. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Professor Wang Advances Photoacoustic Imaging Technology

02-25-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed variants of photoacoustic imaging that can show organs moving in real time, develop three-dimensional (3-D) images of internal body parts, and even differentiate cancerous cells from healthy cells. Photoacoustic imaging, a technique for examining living materials through the use of laser light and ultrasonic sound waves, has many potential applications in medicine because of its ability to show everything from organs to blood vessels to tumors. Wang has now further advanced photoacoustic imaging technology with what he calls Photoacoustic Topography Through an Ergodic Relay (PATER), which aims to simplify the equipment required for imaging of this type. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Professor Wang Develops World's Fastest Camera

01-21-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed the world's fastest camera, a device capable of taking 10 trillion pictures per second. It's so fast that it can even capture light traveling in slow motion. "What we've done is to adapt standard phase-contrast microscopy so that it provides very fast imaging, which allows us to image ultrafast phenomena in transparent materials," says Wang. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Microrobots Activated by Laser Pulses Show Promise For Treating Tumors

07-24-19

MedE Professors Wei Gao and Lihong Wang are working on microrobots that can deliver drugs to specific spots inside the body while being monitored and controlled from outside the body. "These micromotors can penetrate the mucus of the digestive tract and stay there for a long time. This improves medicine delivery," Professor Gao says. "But because they're made of magnesium, they're biocompatible and biodegradable." [Caltech story]

Tags: EE research highlights MedE Lihong Wang Wei Gao

Lasers Aim to Replace Scalpels in Cutting-Edge Biopsy Technique

05-16-19

Professor Lihong Wang and Postdoctoral Scholar Dr. Junhui Shi have developed a new imaging technique that uses pulses from two kinds of lasers to take pictures of microscopic biological structures. This new approach, called ultraviolet-localized mid-infrared photoacoustic microscopy, or ULM-PAM, develops images of the microscopic structures found in a piece of tissue by bombarding the sample with both infrared and ultraviolet laser light. "Because ultraviolet light and infrared have different properties, we had to find special mirrors and glass that could focus both," Dr. Shi says. "And because no camera exists that can see both, we had to develop ways to see if they were correctly focused." [Caltech story]

Tags: EE research highlights MedE Lihong Wang postdocs Junhui Shi

Laser Technology Helps Researchers Scrutinize Cancer Cells

04-01-19

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, and colleagues are using photoacoustic microscopy (PAM) to improve on an existing technology for measuring the oxygen-consumption rate (OCR). This new method allows the researchers to determine how oxygenated a sample of blood is by "listening" to the sound it makes when illuminated by the laser. Professor Wang calls this single-cell metabolic photoacoustic microscopy, or SCM-PAM. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Professor Wang Receives Biophotonics Award

02-28-18

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has received the 2018 Michael S. Feld Biophotonics Award from the Optical Society (OSA) for “invention of the world’s fastest two-dimensional receive-only camera; enabling real-time imaging of the fastest phenomena on earth.” The award recognizes individuals for their innovative and influential contributions to the field of biophotonics, regardless of their career stage. [OSA release]

Tags: EE honors MedE Lihong Wang

Professor Wang Elected to the National Academy of Engineering

02-07-18

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has been elected to the National Academy of Engineering (NAE). Professor Wang was elected for "inventions in photoacoustic microscopy enabling functional, metabolic, and molecular imaging in vivo." Election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer. Academy membership honors those who have made outstanding contributions to "engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature," and to the "pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education." [Caltech story] [NAE release]

Tags: EE honors MedE National Academy of Engineering Lihong Wang