News & Events


Advancing Future Quantum Science Efforts


Five new Department of Energy centers will apply quantum information science to emerging technologies. The centers will develop cutting-edge quantum technologies for use in a wide range of possible applications including scientific computing; fundamental physics and chemistry research; and the design of solar cells and of new materials and pharmaceuticals. Caltech faculty will participate in four of the new science centers: the Quantum Systems Accelerator, led by the Lawrence Berkeley National Laboratory, also known as Berkeley Lab; the Quantum Science Center, led by Oak Ridge National Laboratory; Q-NEXT, led by Argonne National Laboratory; and the Co-design Center for Quantum Advantage, led by Brookhaven National Laboratory. [Caltech story]

Tags: APhMS EE research highlights MedE CMS Oskar Painter KNI Andrei Faraon

Mohith Manohara Receives 2020 Henry Ford II Scholar Award


Electrical engineering student Mohith Manohara is a recipient of the 2020 Henry Ford II Scholar Award. The award is made annually to engineering students with the best academic record at the end of the third year of undergraduate study. Mohith is currently a junior studying Electrical Engineering at Caltech. He does research on phased arrays with Ali Hajimiri, Bren Professor of Electrical Engineering and Medical Engineering; Co-Director, Space-Based Solar Power Project, and leads the electronics on the Caltech Robotics Team. This summer he will be doing an internship at a startup called Epirus, and afterwards he plans to pursue a PhD. The Henry Ford II Scholar Award is funded under an endowment provided by the Ford Motor Company Fund.

Tags: EE honors MedE Henry Ford II Scholar Award Ali Hajimiri KNI Mohith Manohara

Lei Li Wins Charles Wilts Prize


Lei Li advised by Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, is a winner of this year's Charles Wilts Prize, for his doctoral thesis "Multi-contrast Photoacoustic Computed Tomography." The Charles Wilts Prize is awarded every year to a graduate student in Electrical Engineering for outstanding independent research.

Tags: EE honors MedE Wilts Prize KNI Lihong Wang Lei Li

Seeing Through Opaque Media


Changhuei Yang, Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering, has developed a technique that combines fluorescence and ultrasound to peer through opaque media, such as biological tissue. "We hope that one day this method can be deployed to extend the operating depth of fluorescence microscopy and help image fluorescent labeled cells deep inside living animals," says Yang. [Caltech story]

Tags: EE research highlights Changhuei Yang MedE KNI

New Ultrafast Camera Takes 70 Trillion Pictures Per Second


A new camera developed by Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, is capable of taking as many as 70 trillion frames per second. The camera technology, which Wang calls compressed ultrafast spectral photography (CUSP), combines a laser that emits extremely short pulses of laser light that last only one quadrillionth of a second (one femtosecond) with optics and a specialized type of camera. The technology could open up new avenues of research in fields that include fundamental physics, next-generation semiconductor miniaturization, and the life sciences. "We envision applications in a rich variety of extremely fast phenomena, such as ultrashort light propagation, wave propagation, nuclear fusion, photon transport in clouds and biological tissues, and fluorescent decay of biomolecules, among other things," Wang says. [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang

Tiny Optical Cavity Could Make Quantum Networks Possible


Andrei Faraon, Professor of Applied Physics and Electrical Engineering, and team have shown that atoms in optical cavities—tiny boxes for light—could be foundational to the creation of a quantum internet. They identified a rare-earth ytterbium ion in the center of a beam. The ytterbium ions are able to store information in their spin for 30 milliseconds. In this time, light could transmit information to travel across the continental United States. "It's a rare-earth ion that absorbs and emits photons in exactly the way we'd need to create a quantum network," says Faraon. "This could form the backbone technology for the quantum internet." [Caltech story]

Tags: APhMS EE research highlights KNI Andrei Faraon Andrei Ruskuc Jake Rochman John Bartholomew Yan Qi Huan

Professor Wang Advances Photoacoustic Imaging Technology


Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed variants of photoacoustic imaging that can show organs moving in real time, develop three-dimensional (3-D) images of internal body parts, and even differentiate cancerous cells from healthy cells. Photoacoustic imaging, a technique for examining living materials through the use of laser light and ultrasonic sound waves, has many potential applications in medicine because of its ability to show everything from organs to blood vessels to tumors. Wang has now further advanced photoacoustic imaging technology with what he calls Photoacoustic Topography Through an Ergodic Relay (PATER), which aims to simplify the equipment required for imaging of this type. [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang

Professor Wang Develops World's Fastest Camera


Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed the world's fastest camera, a device capable of taking 10 trillion pictures per second. It's so fast that it can even capture light traveling in slow motion. "What we've done is to adapt standard phase-contrast microscopy so that it provides very fast imaging, which allows us to image ultrafast phenomena in transparent materials," says Wang. [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang