Studying Chaos with One of the World's Fastest Cameras
01-14-21
There are things in life that can be predicted reasonably well. The tides rise and fall. A billiard ball bounces around a table according to orderly geometry. And then there are things that defy easy prediction: The hurricane that changes direction without warning. The splashing of water in a fountain. These phenomena and others like them can be described as chaotic systems. Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed a new tool that might help to better understand chaotic systems. [Caltech story]
Tags:
EE
research highlights
MedE
Lihong Wang
Lihong Wang Receives NIH BRAIN Grant
12-07-20
Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has received funding for neuroscience projects from the National Institutes of Health's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Wang and his team aim to develop a technology called 3D photoacoustic computed tomography (PACT) that will rapidly image large-scale neural activity in human brains with high sensitivity. "Photoacoustic imaging of adult human brains is one of the most challenging frontiers in our field," says Wang. "It requires innovation to overcome the signal attenuation and wavefront distortion due to the skull. I'm glad that the NIH has the vision to fund this worthy research direction." [Caltech story]
Tags:
EE
research highlights
MedE
Lihong Wang
AI-Driven COVID-19 Model Outperforms Competitors
11-30-20
While existing models to predict the spread of a disease already exist, few, if any, incorporate artificial intelligence (AI). Professor Yaser Abu-Mostafa is using a new model for predicting COVID-19's impact using AI and it dramatically outperforms other models, so much so that it has attracted the interest of public health officials across the country. "AI is a powerful tool, so it only makes sense to apply it to one of the most urgent problems the world faces," says Yaser Abu-Mostafa. [Caltech story]
Tags:
EE
research highlights
CMS
Yaser Abu-Mostafa
Advancing Future Quantum Science Efforts
08-27-20
Five new Department of Energy centers will apply quantum information science to emerging technologies. The centers will develop cutting-edge quantum technologies for use in a wide range of possible applications including scientific computing; fundamental physics and chemistry research; and the design of solar cells and of new materials and pharmaceuticals. Caltech faculty will participate in four of the new science centers: the Quantum Systems Accelerator, led by the Lawrence Berkeley National Laboratory, also known as Berkeley Lab; the Quantum Science Center, led by Oak Ridge National Laboratory; Q-NEXT, led by Argonne National Laboratory; and the Co-design Center for Quantum Advantage, led by Brookhaven National Laboratory. [Caltech story]
Tags:
APhMS
EE
research highlights
CMS
Oskar Painter
Andrei Faraon
AI for a Better Prediction COVID-19 Model
08-25-20
A team of Caltech students, led by Professor Yaser Abu-Mostafa, have developed a tool to predict the impact of COVID-19 using artificial intelligence (AI). While many models to predict the spread of a disease already exist, few if any incorporate AI, which makes predications based on observations of what is actually happening as opposed to what the model's designers think should happen. AI has the power to discover patterns hidden in data that the human eye might not recognize. [Caltech story]
Tags:
EE
research highlights
CMS
Yaser Abu-Mostafa
Seeing Through Opaque Media
05-12-20
Changhuei Yang, Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering, has developed a technique that combines fluorescence and ultrasound to peer through opaque media, such as biological tissue. "We hope that one day this method can be deployed to extend the operating depth of fluorescence microscopy and help image fluorescent labeled cells deep inside living animals," says Yang. [Caltech story]
Tags:
EE
research highlights
Changhuei Yang
MedE
New Ultrafast Camera Takes 70 Trillion Pictures Per Second
05-04-20
A new camera developed by Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, is capable of taking as many as 70 trillion frames per second. The camera technology, which Wang calls compressed ultrafast spectral photography (CUSP), combines a laser that emits extremely short pulses of laser light that last only one quadrillionth of a second (one femtosecond) with optics and a specialized type of camera. The technology could open up new avenues of research in fields that include fundamental physics, next-generation semiconductor miniaturization, and the life sciences. "We envision applications in a rich variety of extremely fast phenomena, such as ultrashort light propagation, wave propagation, nuclear fusion, photon transport in clouds and biological tissues, and fluorescent decay of biomolecules, among other things," Wang says. [Caltech story]
Tags:
EE
research highlights
MedE
Lihong Wang
Professor Wang Advances Photoacoustic Imaging Technology
02-25-20
Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed variants of photoacoustic imaging that can show organs moving in real time, develop three-dimensional (3-D) images of internal body parts, and even differentiate cancerous cells from healthy cells. Photoacoustic imaging, a technique for examining living materials through the use of laser light and ultrasonic sound waves, has many potential applications in medicine because of its ability to show everything from organs to blood vessels to tumors. Wang has now further advanced photoacoustic imaging technology with what he calls Photoacoustic Topography Through an Ergodic Relay (PATER), which aims to simplify the equipment required for imaging of this type. [Caltech story]
Tags:
EE
research highlights
MedE
Lihong Wang