News & Events

Headlines

Recording Brain Activity with Laser Light

06-07-21

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has demonstrated for the first time a new technology for imaging the human brain using laser light and ultrasonic sound waves. The technology, known as photoacoustic computerized tomography, or PACT, has been developed as a method for imaging tissues and organs. Now, Wang has made further improvements to the technology that make it so precise and sensitive that it can detect even minute changes in the amount of blood traveling through very tiny blood vessels as well as the oxygenation level of that blood. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

EAS New Horizons Diversity, Equity & Inclusion Award

05-04-21

The Division of Engineering and Applied Sciences seeks nominations to recognize and honor individuals within the EAS community who have actively contributed to EAS’s goal to be a diverse, equitable, and inclusive engineering community. The award is available to members of the EAS community, including current students, postdoctoral scholars, staff, and faculty. Nominations are due Wednesday, May 19, 2021 and are accepted from anyone in the EAS community, EAS alumni and members of the Caltech community. Click here for full description of how to make a nomination.

Tags: APhMS EE honors GALCIT MedE MCE CMS ESE

Students Selected for NSF Graduate Research Fellowship

04-06-21

The National Science Foundation (NSF) has selected graduate students Komron Shayegan, Steven Bulfer, and Daniel Mukasa to receive Graduate Research Fellowships. The selection criteria used to identify NSF fellows reflect the potential of the applicant to advance knowledge and benefit society. Those selected for a fellowship will receive support for three years of graduate study in a research-based master's or doctoral program in science or engineering. [Caltech story]

Tags: APhMS EE honors alumni Komron Shayegan Steven Bulfer Skye Reese Noelle Unyoung Davis Daniel Mukasa

Astronomers Image Magnetic Fields at the Edge of M87's Black Hole

03-24-21

The Event Horizon Telescope (EHT) collaboration, which produced the first-ever image of a black hole, revealed a new view of the massive object at the center of the M87 galaxy: a picture of its polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole. "We are now able to see a different dimension of the light circling the M87 black hole," says Katie Bouman, Assistant Professor of Computing and Mathematical Sciences, Electrical Engineering and Astronomy, Rosenberg Scholar, and co-coordinator of the EHT Imaging Working Group. "The image we reconstructed earlier showed us how bright the light was around the black hole shadow. This image is telling us about the direction of that light." [Caltech story]

Tags: EE research highlights CMS Katie Bouman

Professor Bouman Featured in Inverse Magazine

03-10-21

Katie Bouman, Assistant Professor of Computing and Mathematical Sciences, Electrical Engineering and Astronomy; Rosenberg Scholar, was featured in Inverse Magazine as one of the astronomers who captured the first image of a black hole. In 2019, Bouman and a group of more than 200 astronomers from all over the world managed the inconceivable: They captured the first image of a black hole, rendering the invisible visible. "Ideally, to see a black hole, we would need a telescope the size of the entire Earth," says Bouman. "We had to come up with a computational telescope that size." [Inverse article]

Tags: EE research highlights CMS Katie Bouman

New Insight into Nonlinear Optical Resonators Unlocks Door to Numerous Potential Applications

02-25-21

Devices known as optical parametric oscillators are among the widely used nonlinear resonators in optics; they are "nonlinear" in that there is light flowing into the system and light leaking out, but not at the same wavelengths. Though these oscillators are useful in a variety of applications, including in quantum optics experiments, the physics that underpins how their output wavelength, or spectrum, behaves is not well understood. "When you add strong nonlinearity to resonators, you enter what we call a 'rich physics regime,'" says Alireza Marandi, Assistant Professor of Electrical Engineering and Applied Physics. "'Rich' in physics terms usually means complicated and hard to use, but we need nonlinearities to create useful functionalities such as switching for computing." To be able to make full use of nonlinear optical resonators, researchers want to be able to understand and model the physics that underpin how they work. Marandi and his colleagues recently uncovered a potential way to engineer those rich physics, while discovering phase transitions in the light that is generated by the resonators. [Caltech story]

Tags: APhMS EE research highlights KNI Alireza Marandi

Metals that Work Like Magic

02-16-21

Metals that Work Like Magic, a podcast from the Wall Street Journal, features Jamil Tahir-Kheli, research staff member working with Carver Mead, Gordon and Betty Moore Professor of Engineering and Applied Science, Emeritus. The podcast focuses on the history of superconductivity research over the past forty years and potential applications.

Tags: EE research highlights CMS Carver Mead CNS Jamil Tahir-Kheli

Studying Chaos with One of the World's Fastest Cameras

01-14-21

There are things in life that can be predicted reasonably well. The tides rise and fall. A billiard ball bounces around a table according to orderly geometry. And then there are things that defy easy prediction: The hurricane that changes direction without warning. The splashing of water in a fountain. These phenomena and others like them can be described as chaotic systems. Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed a new tool that might help to better understand chaotic systems. [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang

Lihong Wang Receives NIH BRAIN Grant

12-07-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has received funding for neuroscience projects from the National Institutes of Health's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Wang and his team aim to develop a technology called 3D photoacoustic computed tomography (PACT) that will rapidly image large-scale neural activity in human brains with high sensitivity. "Photoacoustic imaging of adult human brains is one of the most challenging frontiers in our field," says Wang. "It requires innovation to overcome the signal attenuation and wavefront distortion due to the skull. I'm glad that the NIH has the vision to fund this worthy research direction." [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang

AI-Driven COVID-19 Model Outperforms Competitors

11-30-20

While existing models to predict the spread of a disease already exist, few, if any, incorporate artificial intelligence (AI). Yaser Abu-Mostafa, Professor of Electrical Engineering and Computer Science, is using a new model for predicting COVID-19's impact using AI and it dramatically outperforms other models, so much so that it has attracted the interest of public health officials across the country. "AI is a powerful tool, so it only makes sense to apply it to one of the most urgent problems the world faces," says Yaser Abu-Mostafa. [Caltech story]

Tags: EE research highlights CMS Yaser Abu-Mostafa CNS