Joining Caltech next year:
Alireza Marandi
Alireza Marandi

Professor Marandi’s research is focused on fundamental technological developments in Nonlinear Photonics through exploring the frontiers of ultrafast optics, optical frequency combs, quantum optics, optical information processing, mid-infrared photonics, and laser spectroscopy. His team works on realization of novel nonlinear photonic devices and systems for applications ranging from sensing to unconventional computing and information processing, as well as advancing the theoretical understanding of them.

Webpage

Faculty

Yaser S. Abu-Mostafa

Professor of Electrical Engineering and Computer Science

Machine learning applies to any situation where there is data that we are trying to make sense of, and a target function that we cannot mathematically pin down. The spectrum of applications is huge, going from financial forecasting to medical diagnosis to industrial inspection to recommendation systems, to name a few. The field encompasses neural networks, statistical inference, and data mining.

Webpage
Jehoshua (Shuki) Bruck

Gordon and Betty Moore Professor of Computation and Neural Systems and Electrical Engineering

Professor Bruck focuses on distributed computing, fault-tolerant computing, wireless systems, computation in neural and biological systems.

Webpage
Venkat Chandrasekaran

Professor of Computing and Mathematical Sciences and Electrical Engineering

Chandrasekaran’s research interests lie in mathematical optimization and its application to the information sciences.

Webpage
Hyuck Choo

Assistant Professor of Electrical Engineering; Investigator, Heritage Medical Research Institute

Professor Choo studies micro-/nanoscale optics, micro-/nanofabrication, advanced microscopy/nanoscopy, and their applications to optical communication and biomedical imaging/sensing.

Webpage
John Doyle

Jean-Lou Chameau Professor of Control and Dynamical Systems, Electrical Engineering, and Bioengineering

Doyle's research is on theoretical foundations for complex tech, bio, med, neuro, and social networks integrating control, communications, computing, and multiscale physics. Layered architectures such as brains integrate high level planning with fast lower level sensing, reflex, and action and facilitate learning, adaptation, augmentation (tools), and teamwork, despite being implemented in energy efficient hardware with sparse, quantized, noisy, delayed, and saturating sensing, communications, computing, and actuation, on time scales from milliseconds to minutes to days.  We are developing a mathematical framework that deals with all of these features and constraints in a coherent and rigorous way with broad applications in science and technology.

Webpage
Michelle Effros

George Van Osdol Professor of Electrical Engineering

Professor Effros' research interests include information theory, data compression, and network communications.

Webpage
Azita Emami

Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering; Investigator, Heritage Medical Research Institute; EAS Division Deputy Chair

Professor Emami works to design and develop high-performance, reliable, low-power mixed-mode circuits in highly scalable technologies that can lead to the advancement of theory and creation of new tools. The applications for this work cover everything from mixed-signal integrated circuits for digital data communication, low-power circuit and system solutions, very-large-scale-integrated (VSLI) systems, circuits at the interfaces, optoelectronics, and biomedical implants.

Webpage
Ali Hajimiri

Bren Professor of Electrical Engineering and Medical Engineering; Executive Officer for Electrical Engineering; Co-Director, Space-Based Solar Power Project

Professor Hajimiri focuses on integrated circuits and their applications in various disciplines, such as biotechnology, communications, and sensing, spanning a wide range of frequencies from high-speed and RF to low-frequency high-precision circuits. We investigate both the theoretical analysis of the problems in integrated circuits as well as practical implementations of new systems in very large scale integrated circuits.

Webpage
Babak Hassibi

Mose and Lillian S. Bohn Professor of Electrical Engineering

Hassibi's research is in communications, information theory, signal processing, and control. He is currently most interested in various information-theoretic and algorithmic aspects of wireless communications, especially wireless networks. Other interests include adaptive signal processing and neural networks; blind channel equalization; statistical signal processing; robust estimation and control, especially connections between robustness and adaptation; and linear algebra, with emphasis on fast algorithms, random matrices and group representation theory.

Webpage
Victoria Kostina

Assistant Professor of Electrical Engineering

Victoria Kostina's research spans information theory, coding, and wireless communications. Her current efforts explore one of the most exciting avenues in today's information theory: the nonasymptotic regime. Leveraging tools from the theory of random processes and concentration of measure, she pursues fundamental insight into modern delay-constrained communication systems.

Webpage
Steven Low

Power systems, cyber-physical systems, network architecture, energy-efficient networking.

Webpage
Pietro Perona

Allen E. Puckett Professor of Electrical Engineering

Professor Perona's research focusses on vision: how do we see and how can we build machines that see.

Professor Perona has been mostly active in the area of visual recognition, more specifically visual categorization. He is studying how machines can learn to recognize frogs, cars, faces and trees with minimal human supervision, and how one could make large image collections and even the web searchable by image content.

In collaboration with Professors Anderson and Dickinson, professor Perona is building vision systems and statistical techniques for measuring actions and activities in fruit flies and mice. This enables geneticists and neuroethologists to investigate the relationship between genes, brains and behavior.

Professor Perona is also interested in studying how humans perform visual tasks, such as searching and recognizing image content. One of his recent projects studies how to harness the visual ability of thousands of people on the web for classifying and searching image content.

Webpage
David B. Rutledge

Kiyo and Eiko Tomiyasu Professor of Engineering

Dr. Rutledge’s newest research is in projections for fossil-fuel production, and the implications for alternative energy sources and climate change. His earlier research was in developing integrated-circuit antennas for sub-millimeter waves, imaging antenna arrays, quasi-optical systems, software for computer-aided design and measurement, and high-frequency switching power amplifiers. He is co-author with Scott Wedge, Richard Compton, and Matthias Gerstlauer, of the popular microwave computer-aided design package, Puff, which has sales of over 30,000 copies worldwide. He is also author of the textbook The Electronics of Radio, published by Cambridge University Press, which has had four printings. He designed microwave data-link systems as an Aerosystems Engineer at Lockheed-Martin.

Webpage
Axel Scherer

Bernard Neches Professor of Electrical Engineering, Applied Physics and Physics

Professor Scherer's group focuses on the application of microfabrication to integrated microsystems. Recently, his group has specialized on developing sensors and diagnostic tools that can be used for low-cost point-of-care disease detection as well as precision health monitoring.

Professor Scherer has pioneered microcavity lasers and filters, and now his group works on integration of microfluidic chips with electronic, photonic and magnetic sensors. His group has also developed silicon nanophotonics and surface plasmon enhanced light emitting diodes, and has perfected the fabrication and characterization of ultra-small structures by lithography and electron microscopy.

Presently, his group works on integration of microfluidic chips with electronic, photonic and magnetic sensors. His group has also developed silicon nanophotonics and surface plasmon enhanced light emitting diodes, and has perfected the fabrication and characterization of ultra-small structures by lithography and electron microscopy.

Webpage
Yu-Chong Tai

Anna L. Rosen Professor of Electrical Engineering and Mechanical Engineering; Andrew and Peggy Cherng Medical Engineering Leadership Chair; Executive Officer for Medical Engineering

Professor Y.C. Tai works on miniature biomedical and MEMS devices including drug pumps, intraocular lens, retinal implants, cortical implants, spinal cord implants, circulating tumor cell (CTC) analysis, blood analysis on-a-chip, and so on. The research often involves broad materials, design, technology and fabrication topics.

Webpage
P. P. Vaidyanathan

Professor of Electrical Engineering

Sparse arrays for signal processing, compressive sensing and sparse reconstruction, spectrum sensing and applications in cognitive radio, filter banks, transform domain techniques for signal analysis, radar signal processing, and data driven signal processing.

Webpage
Lihong Wang

Bren Professor of Medical Engineering and Electrical Engineering

Professor Wang’s research focuses on biomedical imaging. In particular, his lab has developed photoacoustic imaging that allows peering noninvasively into biological tissues. Compared to conventional optical microscopy, his techniques have increased the penetration by nearly two orders of magnitude, breaking through the optical diffusion limit. The Wang lab has invented or discovered functional photoacoustic tomography, 3D photoacoustic microscopy, optical-resolution photoacoustic microscopy, photoacoustic Doppler effect, photoacoustic reporter gene imaging, microwave-induced thermoacoustic tomography, universal photoacoustic reconstruction algorithm, time-reversed ultrasonically encoded optical focusing, and compressed ultrafast photography (world’s fastest camera capable of 10 trillion frames per second). Combining rich optical contrast and scalable ultrasonic resolution, photoacoustic imaging is the only modality capable of providing multiscale high-resolution structural, functional, metabolic, and molecular imaging of organelles, cells, tissues, and organs as well as small-animal organisms in vivo. Broad applications include early-cancer detection, surgical guidance, and brain imaging. For example, it can help surgeons effectively remove breast cancer lumps, reducing the need for follow-up surgeries. Professor Wang’s Monte Carlo model of photon transport in scattering media is used worldwide as a standard tool.

Webpage
Changhuei Yang

Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering

The research of the Biophotonics Laboratory, led by Professor Changhuei Yang, is focused on the development of novel tools that combine optics and microfluidics to tackle diagnostic and measurement problems in biology and medicine. His main research areas are ePetri, Fourier Ptychographic microscopy, and time-reversal optical focusing.

Webpage
Amnon Yariv

Martin and Eileen Summerfield Professor of Applied Physics and Electrical Engineering

Professor Amnon Yariv's research focuses on the theoretical and technological underpinning of optical communication. Present projects include: new types of semiconductor lasers, optical phase-lock systems and coherent photonics, hybrid Si/III-V devices for lasers, detectors and modulation, "Slow" light propagation in artificial periodic dielectric waveguides.

Webpage

Emeriti

William Bridges

Carl F Braun Professor of Engineering, Emeritus

Webpage
Charles Elachi

Professor of Electrical Engineering and Planetary Science, Emeritus

Professor Elachi's research interests are in Earth and planetary remote sensing and space robotic exploration.

Thomas E. Everhart

President Emeritus; Professor of Electrical Engineering and Applied Physics, Emeritus

Webpage
Robert J. McEliece

Allen E. Puckett Professor and Professor of Electrical Engineering, Emeritus

Webpage
Marc-Aurele Nicolet

Professor of Electrical Engineering and Applied Physics, Emeritus

Professor Nicolet focuses on solid-state device technology: thin-film processes and surface layer phenomena.

Webpage