News & Events

Headlines

Best Student Paper Award at IEEE CICC Conference´╗┐

03-25-20

Professor Azita Emami's group in collaboration with Professor Wei Gao’s group has won the best student paper award at the 2020 IEEE Custom Integrated Circuits Conference. The title of the paper is "A Fully-Integrated Biofuel-Cell-Based Energy Harvester with 86% Peak Efficiency and 0.25V Minimum Input Voltage Using Source-Adaptive MPPT." The IEEE CICC is a premier conference devoted to integrated circuit development. The conference program is a blend of oral presentations, exhibits, panels and forums. The conference sessions present original first published technical work and innovative circuit techniques that tackle practical problems. [Read the paper] [Past recipients]

Tags: EE honors MedE Kuan-Chang Chen Azita Emami Wei Gao Arian Hashemi You Yu Abhinav Agarwal William Kuo Minwo Wang Gudrun Hoskuldsdottir

Professor Wang Advances Photoacoustic Imaging Technology

02-25-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed variants of photoacoustic imaging that can show organs moving in real time, develop three-dimensional (3-D) images of internal body parts, and even differentiate cancerous cells from healthy cells. Photoacoustic imaging, a technique for examining living materials through the use of laser light and ultrasonic sound waves, has many potential applications in medicine because of its ability to show everything from organs to blood vessels to tumors. Wang has now further advanced photoacoustic imaging technology with what he calls Photoacoustic Topography Through an Ergodic Relay (PATER), which aims to simplify the equipment required for imaging of this type. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Professor Wang Develops World's Fastest Camera

01-21-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed the world's fastest camera, a device capable of taking 10 trillion pictures per second. It's so fast that it can even capture light traveling in slow motion. "What we've done is to adapt standard phase-contrast microscopy so that it provides very fast imaging, which allows us to image ultrafast phenomena in transparent materials," says Wang. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Microrobots Activated by Laser Pulses Show Promise For Treating Tumors

07-24-19

MedE Professors Wei Gao and Lihong Wang are working on microrobots that can deliver drugs to specific spots inside the body while being monitored and controlled from outside the body. "These micromotors can penetrate the mucus of the digestive tract and stay there for a long time. This improves medicine delivery," Professor Gao says. "But because they're made of magnesium, they're biocompatible and biodegradable." [Caltech story]

Tags: EE research highlights MedE Lihong Wang Wei Gao

Lasers Aim to Replace Scalpels in Cutting-Edge Biopsy Technique

05-16-19

Professor Lihong Wang and Postdoctoral Scholar Dr. Junhui Shi have developed a new imaging technique that uses pulses from two kinds of lasers to take pictures of microscopic biological structures. This new approach, called ultraviolet-localized mid-infrared photoacoustic microscopy, or ULM-PAM, develops images of the microscopic structures found in a piece of tissue by bombarding the sample with both infrared and ultraviolet laser light. "Because ultraviolet light and infrared have different properties, we had to find special mirrors and glass that could focus both," Dr. Shi says. "And because no camera exists that can see both, we had to develop ways to see if they were correctly focused." [Caltech story]

Tags: EE research highlights MedE Lihong Wang postdocs Junhui Shi

Laser Technology Helps Researchers Scrutinize Cancer Cells

04-01-19

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, and colleagues are using photoacoustic microscopy (PAM) to improve on an existing technology for measuring the oxygen-consumption rate (OCR). This new method allows the researchers to determine how oxygenated a sample of blood is by "listening" to the sound it makes when illuminated by the laser. Professor Wang calls this single-cell metabolic photoacoustic microscopy, or SCM-PAM. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

President Rosenbaum Highlights Postdocs as "Unsung Heroes"

09-24-18

In a letter to the Caltech community during National Postdoc Appreciation Week, the Caltech President emphasizes the role this key group plays at the Institute. He stated, “Caltech's mission of world-leading research and education depends crucially on our postdoctoral scholars. Although their time at Caltech may be short, they quickly become vital parts of the Institute's intellectual fabric.” [President’s Letter] [EAS Postdoc Resource Page]

Tags: APhMS EE GALCIT MedE MCE CMS ESE Thomas Rosenbaum postdocs

The Possibilities are Mote and Remote

08-17-18

Professor Azita Emami’s work in high-speed data communications has led to a breakthrough that could spare millions of people the need to prick themselves with needles. As she engineers a more connected world, she also is working to make it a healthier one. Professor Emami doesn’t draw a line between the different endeavors. “Electronic systems for cell phones and computers are very, very advanced,” she explains. “So why not take the knowledge we have gained developing those technologies and find ways to apply it toward solutions in medicine?” [Breakthrough story]

Tags: EE research highlights MedE Azita Emami

Wireless Pressure-Sensing Eye Implant Could Help Prevent Blindness

06-28-18

Azita Emami, Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering and Executive Officer for Electrical Engineering, Yu-Chong Tai, Anna L. Rosen Professor of Electrical Engineering and Medical Engineering; Andrew and Peggy Cherng Medical Engineering Leadership Chair; Executive Officer for Medical Engineering, and colleagues have developed a new pressure-sensing implant for the eye that could help prevent one of the leading causes of blindness. The implant could help glaucoma patients monitor their condition by wirelessly sending data about the eye to the patient or medical professionals. Patients at risk for glaucoma are required to make regular visits to an ophthalmologist to have their intraocular pressure (eye pressure) checked. The disadvantage is that patients are only able to measure pressure while visiting their doctor. With a wireless implant, a patient has access to their eye pressure data at any time, and continuous monitoring will allow intervention sooner if needed. [Caltech story]

Tags: research highlights MedE Yu-Chong Tai Azita Emami

Butterfly Wings Inspire Light-Manipulating Surface for Medical Implants

04-30-18

 

Professor Hyuck Choo along with postdoctoral researchers Radwanul Hasan Siddique, and graduate student Vinayak Narasimhan working in the Choo lab have developed a synthetic analogue for eye implants that makes them more effective and longer-lasting. The work was inspired by tiny nanostructures on transparent butterfly wings. The eye implant is shaped like a tiny drum, the width of a few strands of hair. When inserted into an eye, its surface flexes with increasing eye pressure, narrowing the depth of the cavity inside the drum. That depth can be measured by a handheld reader, giving a direct measurement of how much pressure the implant is under. [Caltech story]

Tags: EE research highlights MedE Hyuck Choo Radwanul Hasan Siddique Vinayak Narasimhan